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Abstract

Keywords:

We compute approximate solutions to the maximum stable set problem
and the mimimum graph coloring problem using a positive semidefi-
nite relaxation. The positive semidefinite programs are solved using an
implementation of the dual scaling algorithm that takes advantage of
the sparsity inherent in most graphs and the structure inherent in the
problem formulation. From the solution to the relaxation, we apply a
randomized algorithm to find approximate maximum stable sets and a
modification of a popular heuristic to find graph colorings. We obtained
high quality answers for graphs with over 1000 vertices and over 6000
edges.

Stable Set, Independent Set, Maximum Clique, Graph Coloring, Posi-
tive Semidefinite Relaxation.
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1 INTRODUCTION

Given an undirected graph G' = (V, £), a stable set of vertices (or
vertex packing or independent set) is a subset of V' such that no two
vertices are adjacent. The Mazimum Stable Set Problem (MSS) asks
for the stable set with the maximum cardinality. A clique of graph G
is a subset set of vertices such that every pair of vertices is adjacent.
A wvertex cover is a subset of vertices that are incident to each edge in
the graph. Denoting ¢ as the graph complement of ¢, the following
statements concerning any S C V are known to be equivalent:

1. 5 is a stable set of G,
2. Sis a clique of G,
3. V'\ S is vertex cover of GG

Accordingly, the problems of finding a maximum stable set of &G, a max-
imum clique in G, and a minimum vertex cover in G are equivalent.

A vertex coloring of a graph is an assignment of colors to the vertices V'
such that no two adjacent vertices receive the same color. Equivalently,
the problem looks to partition the vertices into independent sets. The
smallest number of colors needed for this coloring is called the chromatic
number of GG. A graph is k-colorable if it can be colored with k colors
or less. Obviously, the cardinality of any clique in G is a lower bound
on the chromatic number of G. When a graph, and every node induced
subgraph, have a chromatic number that equals the cardinality of the
largest clique, it is known as a perfect graph. For this special class of
graphs, the MSS problem can be solved to optimality using a polynomial
algorithm.

These problems are classical problems in combinatorial optimization
and are well known to be NP-complete[19]. The MSS problem can be
solved using polynomial time algorithms for special classes of graphs such
as perfect graphs and t-perfect graphs, circle graphs and their comple-
ments, circular arc graphs and their complements, claw-free graphs, and
graphs with long odd cycles[27], but the existence of a polynomial time
algorithm for arbitrary graphs seems unlikely.

Various exact solution methods have been developed for these com-
binatorial optimization problems. An implicit enumeration technique of
Carrahan and Pardalos[12], integer programming with branch and bound
by Babel and Tinhofer[3][4], Balas, Xue, and Yu[6][7], Mannino and Sas-
sano [27], and Nemhauser[30], integer programming with cutting planes
by Balas [5], Nemhauser[31], and Nemhauser and Sigismondi [30], and a
tabu search by Friden[17] have all been applied to the maximum stable
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set problem. There effectiveness, however, has usually been limited to
graphs with less than 500 vertices. For the minimum graph coloring
problem, implicit enumeration and branch and bound based methods of
Kubale[25] [26] have been limited to very small instances, and a column
generation approach based upon the stable set formulation by Mehrotra
and Trick[28] has been applied to graphs with up to 600 vertices. Of
course all of these algorithms have exponential complexity, so for larger
graphs, the only option available is heuristic methods [34] [21] [22] [29],
which have the cost of regularly suboptimal solutions.

Aside from its theoretical interest, the MSS problem arises in applica-
tions in information retrieval, experimental design, signal transmission,
and computer vision[7]. Graph coloring arises when using finite differ-
ences to approximate sparse Hessian matrices, and well as applications in
computer register allocation[11][14][13], timetable scheduling[9][15][43],
and electronic bandwidth allocation[18]. In many of these applications,
it suffices to find an approximately optimal solution. This fact and the
difficulty of finding exact solutions, have encouraged considerable effort
on finding good approximation algorithms.

2 POSITIVE SEMIDEFINITE
RELAXATIONS

The standard form of a positive semidefinite program is:

Minimize C e X
(SDP)
Subject to A; e X =0, 1=1,...,m,

XeK

where K = K1 & Ko & ---@ K, and K is the cone of n; X n; symmetric
positive semidefinite matrices, C, A; € R"*™ are symmetric, and Ae(C =

tr (ATC).
The dual of (SDP) can be written as:
Maximize b'y
(DSP)
Subject to Z%’Ai +5=C, SeK,
=1
where y € R™.

There are some very strong connections between positive semidefi-
nite programming and combinatorial optimization. The famous Lovasz
number, which provides an upper bound to the maximum stable set of
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a graph and a lower bound to its chromatic number, is the solution to a
positive semidefinite program. Many more combinatorial problems have
can be relaxed into a positive semidefinite program, and some of these
relaxations offer rounding techniques that are guaranteed to be within
a specified fraction of optimality.

Most linear programming relaxations do not offer a performance guar-
antee, but Geomans and Williamson[20], in a now classic result, ap-
plied the solution of a maximum cut positive semidefinite relaxation
to a randomized algorithm and proved that the answers it generates
have an expectation greater than 0.878 of optimality. Although the
stable set problem cannot be approximated within a constant fraction
in polynomial time unless P = NP, provably good approximation al-
gorithms using a positive semidefinite relaxation have been found for
MAX-SAT, MAX-2-SAT, MAX-3-SAT, MAX-4-SAT, MAX k-CUT[36],
MAX-3-CSP, minimum bandwidth, graph bisection, bound constrained
quadratic programming[32][45], graph coloring[23], and some scheduling
problems.

Much like the formulation of Kleinberg and Goemans[24] the SDP
relaxation of the MSS problem will assign each vertex an integer value
of —1 or +1. One of the two sets will be a stable set. Given a graph
G with n — 1 vertices, our formulation, adds an artificial vertex v, with
no edges connecting it to other vertices. Since the artificial vertex is
obviously a member of the maximal stable set of the new graph, it will
used to identify the stable set and enforce the constraints of the problem.
The MSS problem can be stated as:

1 n—1
Maximize 3 (; v? + vnvi)
(MSS)
Subject to v e {-1,1}",

|vi + vj 4 v, = 1if (v5,0;) € E

Denoting €;;, € R”" as the vector with zeros at all indices except ¢,
7, and n, whose elements equal 1, the positive semidefinite relaxation of
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MSS is
D .25
Maximize : o X
b 25
25225 0
(MSSSDP)

Subject to  diag(X) =e,

(eijmel;)eX =1 V(i,j)eE
X =0

Imposing the additional constraint upon (MSSSDP) that the matrix X
have rank one would make it equivalent to (MSS). Relaxing this con-
straint to include all symmetric positive semidefinite matrices makes
the feasible region convex, and the solution to this problem provides an
upper bound to the integer program (MSS). A randomized algorithm
uses a solution of the relaxed problem, X*, to identify stable sets. The
randomized algorithm goes as follows:

1. Given a solution X* to (MSSSDP), find a V' € R"*" such that
X*=vTy.

2. Select a unit vector u € R" from the unit sphere and let v =
sign(VTu).

3. For each (¢,7) € E, if |v; + v; 4+ v, | # 1, change the sign of either

v; Or v;.

The stable set will be the set of vertices with the same sign as v,. For
arbitrary graphs, the constraints corresponding to the edges of the graph
will be satisfied with a frequency greater than 91% [10]. The third step
of the randomized algorithm ensures that no edge connects vertices in
the set by selectively removing vertices from the set. The choice of
whether to switch vertices v; or v; may be arbitrary, but a better choice
may be made by switching the vertex whose value is farthest from v,,: if
|v;—vp| > |v; —vy|, change the sign of v;, otherwise change the sign of v;.
This randomized algorithm can be applied multiple times to calculate
multiple stable sets.

In the linear programming relaxation of the maximal stable set prob-
lem, utilizing larger cliques is crucial for a tight approximation to the
convex hull of the integer program. These cliques can also improve the
positive semidefinite relaxation. Given cliques C',...,C% such that C*
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has nj, vertices, stable sets v € {—1, 1}" must satisfy

|(ng — 1)v, + Z v =1

v; €CK

for k=1,...,d. This formulation has a positive semidefinite relaxation
that more closely approximates the convex hull of the integer program.
This formulation has fewer constraints which can significantly reduce
the time required to solve the positive semidefinite program.

To favor the inclusion of selected vertices into the stable set, the
weighted mazimal stable set problem has a similar formulation. Given a
weights w; on the vertices, this problem seeks to maximize

1 (2 .
5 ; Wy (vi + vnvz)

subject to the same constraints as (MSS). These problems can also be
addressed using the positive semidefinite relaxation.

For the graph coloring problem, instead of assigning colors or integers
to the vertices of the graph, a unit vector v; € R” is assigned to the
each of the n vertices ¢ in V. To capture the property of coloring, the
vectors of adjacent vertices should different in a natural way. Using the
definition of [23], the vector k- coloring of GG is an assignment of unit
vectors v; € R™ to each vertex ¢ in V such that for any two adjacent
vertices ¢ and j, the dot product of the vectors satisfies the inequality
viij < —ﬁ. In other words, the angle between the vectors of adjacent
vertices must be sufficiently large. Define the matrix V such that column
i is given by v; and let X = VTV, The matrix X is positive semidefinite
and satisfies the inequalities X;; = X;; < _lel for each pair of adjacent
edges (7, 7). Obviously, any matrix is n-colorable, so the graph coloring
problem can be posed as:

Minimize  rank(X)

(COLOR)
Subject to  diag(X) =e, (1.1)
X0

Ignoring the objective function, the problem is now a positive semidef-
inite program which seeks to find a feasible point. Heuristic algorithms
can then be applied to the solution to color the graph.

Let a;; € R”™ be a vector of zeros except indices ¢ and j, whose elements
equal one. A positive semidefinite relaxation of the graph & coloring
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problem can be rewritten as:

Minimize 0o X
(COLORSDP)
Subject to  diag(X) =,

(aijag;)oX <2 - szl if (1,j) € E

(1.2)

A solution X* with rank less than or equal to k, identifies a legal k-

coloring. The problem can be solved exactly. More generally, Karger,

Motwani, Sudan propose a randomized algorithm that produces a k-

semicoloring, an assignment of colors with relatively few adjacent ver-

tices with the same color. We propose a heuristic procedure for to obtain

a legal coloring, albeit with more than k colors if necessary.

Coloring Algorithm For k=1,...,

1. Let U* be the uncolored vertices. If U* is empty, terminate the
algorithm.

2. Sort the vertices of U* in decreasing order of degree in G[U*], the
graph induced by the uncolored vertices, and let ¢ be the vertex
with highest degree.

3. Build a vertex set W¥* by examining vertices j € U¥ in the de-
creasing order of X;;. Add j to Wk if it is not adjacent to any of
the vertices in W*,

4. Assign the vertices in W* color k.

This algorithm is a modification of the algorithm proposed by [35].
In their algorithm, only step 3 is different. Instead of using the solu-
tion to the a positive semidefinite program, they examine the vertices
in decreasing order of degree in G[U*]. This algorithm remains one of
the simplest and most popular, although other heuristics have been pro-
posed and can be modified to include information inherent in the positive
semidefinite program.

3 POSITIVE SEMIDEFINITE
PROGRAMMING ALGORITHMS

There are actually several polynomial algorithms that can solve pos-
itive semidefinite programs. One is the primal-scaling algorithm (Nes-
terov and Nemirovskii [33], Alizadeh [1], Vandenberghe and Boyd [42],
and Ye [44]), which is the analogue of the primal potential reduction
algorithm for linear programming. This algorithm uses X to generate
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the iterate direction. Another is the dual-scaling algorithm (Vanden-
berghe and Boyd [42], Anstreicher and Fampa [2], and Ye [44]), which
is the analogue of the dual-scaling algorithm for linear programming.
The dual-scaling algorithm uses only S to generate the iterate direction.
The third is the primal-dual scaling algorithm which uses both X and
S to generate iterate directions, including Alizadeh-Haeberly-Overton,
Helmberg-Rendl-Vanderbei-Wolkowicz/ Kojima-Shida-Hara/ Monteiro,
Nesterov-Todd, Gu, and Toh directions, as well as directions called the
MTW and Half directions (see Todd [39] and references therein). All
these algorithms possess O(y/nlog(1/¢)) iteration complexity to yield
accuracy €.

The features of the positive semidefinite program should determine
which algorithm and which implementation of the algorithm is most
appropriate. In contrast to applications of SDP in control theory and
truss topology design, positive semidefinite programs arising in combi-
natorial optimization typically have many variables, contain sparse low
rank constraint matrices, and require relatively low precision solutions.
Although rank one matrices reduce the complexity of interior point al-
gorithms for positive semidefinite programming by a factor of n, not all
implementations utilize this structure to reduce the complexity. Our im-
plementation of the dual scaling algorithm explicitly accounts for these
features[8]. Furthermore, the dual matrix S has a sparsity pattern like
that of the graph’s adjacency matrix. This sparsity offers the potential
for savings in computation time and memory requirements, which the
dual scaling algorithm can exploit better than primal dual algorithms.
Although the rate of convergence of the dual algorithms is only linear,
the relatively low precision required by combinatorial problems lessens
the disadvantage of slower convergence.

One assumption for the convergence of the dual scaling algorithm is
that the feasible primal region has a relative interior.

Theorem 1 The positive semidefinite relaxation (MSSSDP) has a rel-
ative interior.

n

Proof. 1 Define the vectors v',v?, ... v" by

vl = .
¢ 1 otherwise

j {—1 fi=jori=n+1

and

n+1 __ -1 Zflglgn
' 1 dfi=n+1
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~ These vectors satisfy the constraints of (MSS) and the matrices Xi=
v ()T satisfy the positive semidefinite relazation (MSSSDP). Let

1 n+1 )
X = X'

This matriz is a strict convex combination of symmetric rank one matri-
ces and is therefore positive semidefinite. To prove it is positive definite,
it suffices to show that {v* : i € {1,2,...,n4+1}} is linearly independent.
Linear independence can be shown by evaluating the determinant of V'™,
whose columns are the vectors v'. Since det(V,,) = —(2)" # 0, the con-
vex hull of the feasible solutions of the nonconvex optimization problems
in R contains n+1 linearly independent vectors, so the SDP relaxation
has a feasible solution that is positive definite.

Theorem 2 The feasible region of the n-coloring problem relaxation
(COLORSDP) contains a positive definite matriz.

Proof. 2 Let
Xi]:{ 1 ifi=j

1 .
—37 Otherwise
_ 1 T | nt+2 : : 2
Then X = —zgee’ + 1271, The matriz has one eigenvalue of ;27 and
n — 1 eigenvalue equal to %, which implies it is positive definite.

Since the primal and dual problems of these SDP relaxations always
have a feasible solution whose S and X part is positive definite, it follows
that the primal and dual optimal values are attained and equal[37].
(Quite recently, Tuncel extended these theorems to the SDP relaxations
of rather general nonconvex sets [41].)

4 COMPUTATIONAL RESULTS

In our computational experiments, we used a variety of previously
tested graphs drawn from a large number of sources. For each of these
graphs, we formulated the positive semidefinite relaxation of the integer
combinatorial problem and solved the relaxation until a relative duality
gap of 1072 has been achieved.

For the maximum stable set problems, most of the graphs are taken
from the 2nd DIMACS Challenge [16]. These graphs were contributed
as test problems for solving the maximum clique problem. For these
graphs, we took the complement of these graphs and applied our max-
imum stable set algorithm. The results are supplied in Table 1.1. A
second set of test problems are examples of Mycielski graphs[40]. These
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graphs are interesting because they contain no cliques of size larger than
2. For these graphs, we expect our relaxation to be very tight. The re-
sults are also included in Table 1.1. A third set of graphs are line graphs
created from other randomly generated graphs. Three line graphs were
created from a graph with 100 vertices and 248 nonzero edges. Another
three line graphs were created from graphs with 200 vertices and 597
nonzero edges. These line graphs are interesting because the SDP relax-
ation methods and successive relaxation methods perform very poorly
for the maximum stable set problem in the worst case[38]. For these line
graphs, lower bounds for the maximum stable set was calculated using
the program “dfmax.c”, also available from the DIMACS web site[16].

For each graph, we solved the positive semidefinite relaxation, without
using cliques of size 3 or larger, and applied the randomized procedure
for finding stable sets. Since the time required by the randomization
procedure is very small relative to the time spent on solving the positive
semidefinite program, we applied the randomized procedure n times on
each problem. The datain Table 1.1 includes the number of vertices (|V])
and edges (| F/|) in each graph, the upper bound provided by the semidef-
inite relaxation (SDP), the size of the maximum stable set (Optimal),
and the size the the largest stable set found using our implementation
of the algorithm (DSDP).

Of the 24 graphs, we solved (MSS) exactly 14 times. In 13 of those
14 instances, the positive semidefinite relaxation was extremely tight.
These 13 instances include the five Mycielski graphs, which have no
large cliques. This evidence demonstrates the importance of using large
cliques when such knowledge is available. The ten instances in which
DSDP did not find the optimal answer included all of the line graphs.
Even in the line graphs, however, the SDP relaxation proved to be within
about 10% of the optimal answer. The worst results were from the
problem sanr200.0.7, whose SDP bound is 23.9, maximum stable set
size is 18, and DSDP answer is 11. In most cases, however, the SDP
relaxation was strong and our answers were good.

For the graph coloring problem, we used examples collected by Trick
and Mehrotra [40]. For these problems, we formulated and solved the
relaxed of the n—coloring problem (COLORSDP). From this solution, we
applied the graph coloring heuristic to obtain one graph coloring. Table
1.2 shows the minimal number of colors used, the number of colors we
used in DSDP, and the number of colors used by the heuristic [35].

Of these test problems, the optimal coloring is known for 34 of them.
In 24 of these 34 problems, we correctly identified an optimal coloring
of the graph. Although the heuristic also found an optimal coloring
in many of these graphs, problem queen5.5, utilized the solution to



Table 1.1

Positive Semidefinite Relazations

Maximum Stable Set Problems

Graph V] |E| SDP Optimal DSDP |
hammingl10-2 1024 5120 512.1 512 512
hamming6-2 64 192  32.0 32 32
hamming6-4 64 1312 5.35 4 4
hamming8-2 256 1024 128.0 128 128
johnsonl16-2-4 120 1600 8.0 8 8
johnson8-2-4 28 168 4.0 4 4
brock200_1 200 5066 27.5 21 14
brock200.3 200 7852 18.8 15 9
brock200.4 200 6811 21.3 17 9
| keller4 172 5100 14.0 11 7
san200.0.9_1 200 1990 70.0 70 70
san200.0.9_2 200 1990 60.0 60 60
san200.0.9.3 200 1990 44.1 44 44
sanr200.0.7 200 6032 23.9 18 11
sanr200.0.9 200 2037 49.3 40 34
myciel3 11 20 5.0 5 5
myciel4 23 71 11.0 11 11
myciel5 47 236 23.0 23 23
myciel6 95 755 47.0 47 47
myciel7 191 2360 95.0 95 95
linel 248 1202 50.0 > 47 39
line2 248 1220 49.5 > 47 40
line3 248 1212 49.5 > 47 42
line4 597 3414 100.0 > 89 79
lineb 597 3481 100.0 > 85 76
line6 597 3635 100.0 > 85 82

11
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the positive semidefinite program to find an optimal coloring which the
heuristic could not do. In a total of four problems, the coloring obtained
using the SDP relaxation was better than the coloring obtained by the
heuristic, but in the three DSJC125 graphs, the coloring was actually
worse.

For seven of the graphs in which we definitely did not compute the
optimal coloring, we formulated a tighter formulation. Instead of using
the n-color formulation, we used the k-color formulation where & is the
minimal graph coloring. We solved these tighter relaxations and applied
our heuristic to these solutions, hoping to identify a better coloring. The
results are in Table 1.3. The number of colors required when using the
tighter formulation is in the last column (DSDP2). In only one of the
seven instances did the tighter formulation actually improve the coloring.
On the other hand, there was one instance where the tighter formulation
actually worsened the coloring of the graph. Hence, it seems sufficient
to pose the n-coloring relaxation.

The time required to solve these problems ranged from less than a
second for queen5.5 to over twelve hours to find the maximum stable
set of brock200_1. The heuristic can find answers very quickly, but the
positive semidefinite relaxation may offer improved answers. For other
combinatorial problems, performance guarantees for algorithms using
the positive semidefinite relaxation exist. The cost of these guaran-
tees, however, is the significant additional cost in computation time and
memory requirements. This contributes the growing mountain of evi-
dence demonstrating the high quality of solutions that can be obtained
from the semidefinite relaxation.
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Table 1.2 Graph Coloring Problems
Graph V] |E| Optimal DSDP  Heuristic
anna 138 493 11 11 11
david 87 406 11 11 11
homer 561 1629 13 13 13
huck 74 301 11 11 11
jean 80 254 10 10 10
games120 120 638 9 9 9
miles250 128 387 8 8 8
miles500 128 1170 20 20 20
miles750 128 2113 31 32 32
miles1000 128 3216 42 42 42
miles1500 128 5198 73 73 73
queenb.5 25 160 5 5 7
queen6.6 36 290 7 9 9
queen?.? 49 476 7 11 11
queen8.8 64 728 9 11 12
queen9.9 81 1055 10 13 13
queenl0.10 100 1470 ? 14 14
queenll.11 121 1980 11 15 15
queenl2.12 144 2596 ? 17 17
queenl3.13 169 3328 13 18 18
queenl4.14 196 4186 ? 19 19
myciel3 11 20 4 4 4
mycield 23 71 5 5 5
myciel5 47 236 6 6 6
myciel6 95 755 7 7 7
myciel7 191 2360 8 8 8
zeroin.i.1l 211 4100 49 49 49
zeroin.i.2 211 3541 30 30 30
zeroin.i.3 206 3540 30 30 30
mulsol.i.1 197 3925 49 49 49
mulsol.i.2 188 3885 31 31 31
mulsol.i.3 184 3916 31 31 31
mulsol.i.4 185 3946 31 31 31
mulsol.i.5 186 3973 31 31 31
DSJC125.1 125 736 ? 6 7
DSJC125.5 125 3891 ? 21 22
DSJC125.9 125 6961 ? 49 50
DSJC250.1 250 3218 ? 11 11
DSJR500.1 500 3555 ? 13 13

13
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Table 1.3 Graph Coloring Problems with a Tighter Relaxation

| Graph V| |E| Optimal DSDP DSDP2 |
| miles750 128 2113 31 32 32 |
queent.6 36 290 7 9 9
queen’.7 49 476 7 11 10
queen8.8 64 728 9 11 12
queen9.9 81 1055 10 13 13
queenll.11 121 1980 11 15 15
queenl3.13 169 3328 13 18 18
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